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Nonoptimum decoding algorithms, which select a small set of candidate code words
to be correlated with the received vector, can approach the performance of maximum
likelihood decoders even at low signal-to-noise ratios. A decoding scheme based upon the
best features of previously knowwn algorithms of this type has been developed that can
decode codes which have better performance than those in use today and yet not require

an unreasonable amount of computation.

l. Introduction

An optimum decoder, for block codes transmitted over a
memoryless channel, calculates the distance between the
received vector and all possible code words and selects as the
best estimate of the transmitted code word that one which is
closest to it. Because of the amount of computation required,
it is unreasonable to decode directly in this way all but the
smallest codes, whose error correcting power is relatively
weak. Many schemes have been suggested which reduce the
computational complexity while maintaining the desired
performance. The best of these algorithms are those which
select a small subset of all possible code words, among which
the best estimate of the full decoding aigorithm has a high
probability of being found. The selection of this subset uses
the information provided by sorting the symbols of the
received vector according to absolute magnitude so as to
arrange them in order of their estimated probability of being
correct. The algorithms of this class utilize this information and
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the constraints of the parity check equations in different ways
to generate the set of candidate code words.

One of the first algorithms of this kind was developed by
D. Chase (Ref.1). He suggested perturbing the hardlimited
code word Y by adding to it, modulo 2, a test pattern T to
obtain a new sequence Y'. This new sequence is decoded
algebraically to find the unique code word (if one exists)
within half the minimum distance of the code. The nonzero
bits of the test patterns are selected by a combinatorial con-
struction on the least reliable bits of the received vector
(Ref. 2).

L. Baumert, R. McEliece and G. Solomon (Refs. 3 and 4)
have done much work using sets of erasure patterns. In their
technique, a set of bits equal to the number of redundant bits
in the code is erased. A candidate code word is then generated
by reconstructing these bits from the unerased ones. Each
erasure pattern generates another candidate to be correlated



with the received vector. The reasoning behind using erasure
patterns rather than error patterns is that the redundancy of
binary codes is much greater than its error correcting power.
On the other hand, to correctly decode a received word, this
scheme must cover all hard decision errors. (Using Chase’s
algorithm, a number of errors, up to the correcting power of
the code, may remain exposed.)

These algorithms can be combined into a hybrid scheme
which uses a small number of erasure masks, a few bits of
redundancy and consideration of error patterns of weight two
or less. Such an algorithm is computationally more efficient
than any one of its ancestors and is a possible competitor,
in terms of complexity vs performance, to Viterbi decoding
of convolutional codes (Ref. 5).

Il. An Efficient Hybrid Algorithm

This algorithm reduces the computational complexity by
combining the best features of those mentioned in the pre-
vious section. Using the number of candidate code words
required to achieve a given performance as a measure of
efficiency, McEliece and Baumert’s algorithm is the best.
However, the amount of computation required-to generate
these candidates is much greater than for the other schemes.
For each erasure mask the erased bits must be solved for in
terms of the unerased ones. To reduce the number of times
this computation must be done, errors of low weight are
allowed in the unerased bits and redundancy is used to
reduce the number of error patterns that need to be checked.
A flow chart of the major sections of the algorithm is shown
in Fig. 1.

The first step of the algorithm is to sort the symbols of
the received code word according to their absolute magnitude,
permute the columns of the parity check matrix and reduce it
to standard form. Each erasure mask erases fewer bits than the
number of parity check equations so not all of the unerased
bits are independent. This dependency can be taken advan-
tage of in order to determine which error patterns in the
unerased bits are consistent with the parity equations, and
only those patterns need be used to generate candidate code
words. The number of such error patterns can be a small
fraction of the total number of error patterns, greatly reducing
the number of candidates required for a given level of
performance.

Calculating the error patterns which will be consistent
with the parity check equations can best be done by consider-
ing a portion of the syndrome and determining the error
patterns, which when added to the initial estimate of the
received vector will make that portion equal to zero. Since

a code word must satisfy [H]c = 0, it will also satisfy this
equation for any subset of rows of [H]. Reducing the parity
check matrix and partitioning [H] as:

P 0 c,
= 0
P, 1 <,
r-bits (n - r) bits

it is seen that [P,] ¢, = 0. Therefore, the first 7 bits of the
code word must also be the solution of a set of homogeneous
equations.

For an arbitrary received vector a, the product [H} a=sis
called the syndrome and specifies the coset containing the
possible error patterns in a. The same notion can be used when
considering only the first » bits of the received word. Then
[P,] a, =s,, where s, is the partial syndrome which specifies
the possible error patterns in a,. Representing a,, by ¢, +e,,
where e, is the partial error pattern corresponding to the
partial code word ¢,

(P,] [c, te,]=s,
or

[P,1e, =S8,

Given [P,] and s,, there are a large number of partial error
patterns e, that will satisfy this equation. However, for the
decoding algorithm to be considered here, it is sufficient to
consider patterns of 0, 1 or 2 errors. Note that even though
the adjective “partial” is applied to a,, ¢, and s, the remain-
der of the code word is completely determined from ¢, by
¢, = [P,] c,. The advantage of this approach is that candi-
date code words are determined only by possible error pat-
terns in the most reliable received bits a,. The remaining
received bits a, do not enter at all into the calculation and can
be considered erasures.

No errors as a possible error pattern can only occur if the
partial syndrome equals zero; single errors can occur in those
bits whose corresponding columns of [P, ] sum to s,. In gen-
eral, for an error pattern of weight w to be a possibility, the
sum of the w corresponding columns of [P, ] must equal s, .

Efficient algorithms have been developed for all the steps of
Fig. 1 and are described in detail in Ref. 6. As an example
consider the rate 1/2, (128,64) BCH code of minimum dis-
tance 22. This code’s maximum likelihood coding gain, at a

107



bit probability of error of 10-3, is 1 dB better than the con-
straint length 7, rate 1/2 convolutional code which is in wide
use today. The parameters for decoding this code using the
algorithm developed here are:

(1) Redundancy: 6 bits.

(2) Number of masks: 20.

(3) Mask weighing: see Fig. 2 (30 least reliable bits always
erased).

(4) Average Hamming distance between masks: 16.

(5) All possible error patterns of weight 2 or less in un-
erased bits checked.

The performance, using these parameters, is given in Fig. 3.
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Fig. 1. Flow chart of soft decision decoding algorithm
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Fig. 2. Mask weighing function
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Fig. 3. Performance of the (128,64) BCH code
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